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Last week in Astrophysics

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 24 - September 30,
2024. These are from arXiv’s astro.EP cross-fields
without high-energy main cross-list papers.

Interstellar Medium/Galaxy

Hoang[1] stated that chiral asymmetry might be
induced by spin-polarized electrons (SPEs), whose
spin-polarization originates from the Barnett Ef-
fect1 and are originated from magnetically-aligned
dust grains after the exposure to interstellar ultra-
violet (UV) irradiation. Rotation comes from the
gas collisions and radiative torque (RAT)2 Dust
grains are silicates with iron embeds, which im-
part superparamagnetism. The other significant
part of the paper illustrates how these SPEs can
induce mono-chirality by showing different po-
tential energies of interactions while considering
the direction and spin of the electrons with the
molecules.

Stellar Systems - Populations - Clus-
ters

Hsieh et al.[2] utilized the Atacama Large Mil-
limetre/Submillimetre Array (ALMA) for study-
ing protoplanetary disks and monitored the fol-
lowing nearby clouds: Corona Australis, Aquila,
Chamaeleon I & II, Ophiuchus North, Ophiuchus,
Serpens. The entire sample was self-calibrated
with auto selfcal, with several modifications in-
cluding a manual mask input instead of automask-
ing from tsclean. The source identification was
made with SciPy’s ndimage.maximum filter3 with
the same filter size as the beam size. They used
three weighting schemes, natural (all pixels have
the same weight, poor side-lobe levels, but bet-
ter noise performance), uniform (inversely pro-
portional to the antenna-related sampling density
function, higher noise than natural), and Briggs
0.5 (a compromise between uniform and natural
weightings)4, in protostellar dust disk radii mea-
surements. They detected 184 protostellar disks

1An uncharged body starts to rotate and along its axis,
the electron spins aligned with the induced magnetic mo-
ment in the opposite direction.

2The radiation hits the irregularly shaped body
anisotropically and induces some rotational velocity.

3An image operator filter where one sets a filter window
and every pixel within this window will be assigned the
maximum value present in the filter window.

4Further information on weighting schemes can be
found here.

(18 of them are new, and 7 of them had the first
millimetre measurements) and reported size dif-
ferences among protoplanetary disks while moving
through the stellar evolution ladder, effectively
shrinking with older ages.

Single Star System (Star, Exoplanet)

Voloshina et al.[3] utilized Zwicky Transient Fa-
cility (ZTF) data release 8 for M-dwarf flare de-
tection. For this purpose, they applied two dif-
ferent methods: 1) parametric fit search, and
2) machine learning. For the parametric fit
search, continuous data chunks with the high-
est cadence were separated with a minimum du-
ration of 30 minutes and 2 hours separately as
long- and short-duration chunks. They also ap-
plied χ2 statistics-filter as value greater than 11
to only work on variable ones. In the end, they
had around 4 million long-duration and 10 mil-
lion long-duration chunks. Then, they defined a
modified analytical function to model stellar flux
density and fitting was done in light-curve and
iminuit packages in the Python environment. For
flares with sufficient data points, light-curve Ot-
suSplit feature was used, and in the end, they had
308 candidate flares. For the machine learning,
they employed Active Anomaly Discovery algo-
rithm, which is tuned by experts, and the experts
chose to limit the anomalies for M-dwarf flares,
and out of 860 objects examined, 35 objects were
short-listed for further analysis. Flare energies
were calculated for the sample with lower than
< 20% parallax uncertainty from Gaia EDR3. Af-
ter selecting the ones meeting this criterion and
having enough data points, they ended up with
13 flares. They assumed a 9000 K optically thick
black body for flares and always used the r-band of
the ZTF. They determined the spectral class pho-
tometrically from Pan-STARRS DR2 after galac-
tic reddening correction, and then, for the extinc-
tion values. In the end, both methods have inputs
preprocessed differently, and also resulted in out-
puts that can complement each other.

Brooks et al.[4] with the Backyard Worlds:
Planet 9 Collaboration utilized machine learn-
ing techniques and discovered 118 new ultracool
dwarf candidates. They mainly utilized Wide-
field Infrared Survey Explorer (WISE) data, and
to be able to detect even fainter objects in the
second band of the WISE, W2, they used the
SMDET convolutional neural network technique.
WISE images were co-added to each other in un-
WISE project and the resulting time series were
worked on in the training step of SMDET with
synthetic objects. They were looking for fast-
moving objects to detect relatively nearby brown
dwarfs, hence in the time-series data, the esti-
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mated location-pixel for the object of interest was
also critical, which the algorithm tried to predict.
In another part of the same study, via Backyard
Worlds: Planet 9 citizen science project, humans
checked the images for the candidate high proper
motion objects and marked 1730 real candidates
out of 11900 SMDET candidates. Among these
1730 targets, 232 of them were not cataloged ac-
cording to the SIMBAD and VizieR Catalog Ac-
cess Tools. Finally, Gaia DR3 detected objects
were also filtered out since the target ultracool
dwarf samples were not expected to be visible in
Gaia bands (visible and near-infrared). The pho-
tometry data they compiled were from WISE W1
W2, AllWISE W3 W4, J and Ks of VISTA Hemi-
sphere Survey, UKIRT Hemisphere Survey J and
KMKO bands, and PanSTARRS DR2 bands of
gps, rps, ips, zps, and yps. They validated the
spectral classification from the photometry data
on two objects with sufficiently accurate estima-
tions. They also stated the benefits of utilizing
SMDET in working with large-scale datasets for
similar discoveries.

Li et al.[5] specifically worked on the M3.0V
spectral type star G 80-21 from the Calar Alto
high-Resolution search for M dwarfs with Ex-
oearths with Near-infrared and optical Échelle
Spectrograph (CARMENES). They chose this
star as it has high chromospheric activity. To
model the quiet regions of G 80-21, a similar
but inactive star from the CARMENES catalog
was chosen (LP 819-17). They constructed the
model atmosphere of G 80-21 with MARCS code
(line blanketed local thermodynamic equilibrium
(LTE) model grids). On top of the photosphere,
they put lower and upper chromosphere, and tran-
sition region, and after calculating them under
hydrodynamic equilibrium. The MULTI program
computed the non-local thermodynamic equilib-
rium for the whole atmosphere and along with
the magnetic fields, they were the initial condi-
tions for the RH1.5D code. After these, the active
model was iteratively being matched with the ac-
tual observational spectra of the G 80-21 by the
visual examination of the researchers. Two active
regions in conjunction with an inactive region was
the optimal fit and the active region was variable
and could even take up to 82 % of the sphere.

Tu, Wang, and Liu[6] utilized James Webb
Space Telescope (JWST) Near Infrared Spec-
troscopy (NIRSpec) and Mid-Infrared Instru-
ment Low Resolution Spectroscopy (MIRI LRS)
to analyze 20 T and Y dwarfs. They used
ATMO2020++ and Sonora Elf Owl atmospheric
model grids, and they also compared the alter-
natives of using NIRSpec + MIRI LRS together
or separately. The data normally were reduced
by the standard jwst pipeline, while for photom-

etry calculations, both the JWST pipeline and
CRDS, and also DOLPHOT 2.0 software were
used. Among other things, they discussed obtain-
ing effective temperatures from two different spec-
tra in this study. They stressed the importance of
which instrument is sensitive to which molecules
and lines according to their working region. Nev-
ertheless, MIRI LRS only performed poorly com-
pared to the combined or NIRSpec-only ones.

Vázquez et al.[7] used Gaia DR3 and artifi-
cial intelligence techniques to classify hot subd-
warf binaries in large datasets. The Support Vec-
tor Machine was their supervised classification for
the 3084 hot subdwarfs according to their color-
magnitude diagrams, and self-organizing maps
(SOM) and convolutional neural networks (CNN)
were also used for the 2815 of them with Gaia DR3
BP/RP spectra. Before this SOM - CNN analysis,
a pre-analysis of the spectra (each has 308 bins)
took place with either the uniform manifold ap-
proximation and projection (UMAP) or the cosine
similarity. Their results had a high-agreement
level with the Virtual Observatory SED Analyzer
(VOSA) tool’s binaries.

Protoplanetary/Circumstellar Disks

Hu et al.[8] worked on Bernhard-2, a binary
system with a misaligned circumbinary disk.
They obtain spectra from Gran Telescopio CA-
NARIAS OSIRIS (Optical System for Imaging
and low-Intermediate-Resolution Integrated Spec-
troscopy) instrument, and also CoRot-7 for test-
ing the radial velocity (RV) measurement stabil-
ity, all in the long-slit mode with R2500R grism
and the slit width of 0.6”. The data were reduced
with the PypeIt package, the sky spectrum and
telluric lines (lines coming from emissions from
Earth-residing species) were removed by airvacu-
umvald package. The wavelength-calibrated spec-
tra was cross-correlated with a single-star spec-
trum template using iSpec and Phoenix pack-
ages, too. Two more spectra for Bernhard-2 were
obtained via Keck Planet Finder on the Keck
I telescope and the spectra were reduced with
its specific data reduction pipeline. Addition-
ally, a Magellan Folded-port InfraRed Echelette
(FIRE) spectrum was also obtained for Bernhard-
2, which was in the infrared region of the light
spectrum. Lastly, the photometric observations
were obtained in the expected occultation time
with Post Observatory in r and i bands. In the
end, they confirmed that the circumbinary disk
is indeed misaligned with around 0.69 eccentric-
ity and the Bernhard-2 binary is a confirmed KH
15D-like system.

Williams et al.[9] published the Planetary En-
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riched White Dwarf Database5 In September 24,
2024 the database contained 1739 white dwarfs,
and the preprint has discussed the metal enrich-
ment, and in case there is a binary companion
within 200 au the enrichment is suppressed.

Sun - Solar System

Eya et al.[10] focused on automated data analysis
of Forbush decreases6. They utilized the daily-
averaged cosmic ray raw data corrector for at-
mospheric pressure and also solar activity-related
data (solar wind speed, Dst index etc.) from
the Omni web interface of NASA. The data came
from the neutron monitor stations and the mea-
surements were between 1998-2006. A substan-
tial amount of work was on relating the event
records between different stations since they were
expected to be the same due to the global nature
of Forbush decreases. They confirmed this and
also related the Forbush decreases to solar wind
speed and other parameters. As a future work,
they declared that they will work on separating
the cosmic ray diurnal anisotropy-related varia-
tions in the data.

Li et al.[11] constructed a multi-station me-
teor monitoring and tested two stations in the
suburbs of Beijing with 0.3-0.4 arcmin accuracy
during the Geminid meteor shower. The multi-
station system, with wide field-of-view lenses and
CMOS cameras, detects the meteors when they
enter the Earth atmosphere with one microsecond
accuracy. They will further develop this construc-
tion and increase the station numbers as well.

5The related Python Package GitHub repository is here.
6Forbush decrease is the reduction in observed galactic

cosmic ray intensity since a solar wind after a coronal mass
ejection (CME) event scavenges some of them.
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Last week in Chemistry

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 24 - September 30,
2024. They are more in nature of spectroscopy
alone, and hence several studies regarding bio-
chemistry, chromatography, and several other
disciplines might be missed here.

Mass Spectroscopy

Sanders et al.[12] worked on a multi-injection on-
line size exclusion chromatography and charge-
detection mass spectroscopy (CD-MS) system
which also included Hadamard transform mul-
tiplexing. The multi-injection online is a self-
explanatory name, a bit-index injection plan was
set and multiple injections were done from the
sample, and the Hadamard transform multiplex-
ing considers all these injections simultaneously
and demultiplex these signals in the end. The
size exclusion chromatography separates the com-
pounds according to their sizes. Mass Spec-
troscopy is, basically, ionizing a molecule/atom
and after monitoring its movement through the
magnetic field and determining the mass/charge
ratio.7. The charge-detection version of mass
spectroscopy also gives an output regarding the
charge of the molecule or molecular part where
the information of m/z is known. As a result, the
mass can be estimated directly. They worked on
β-galactosidase, GroEL, and E. coli cell lysate,
and were satisfied with the results.

Laurent et al.[13] illustrated the utility of
time-of-flight secondary ion mass spectrometry on
monitoring high-entropy alloys. They worked on
Ru-Pt-Pd-Ir-Rh alloy. The idea to use ToF-SIMS
here is that the ion cluster it generates might
give the information on the neighboring atoms
around a specific atom, hence facilitate the ho-
mogeneity assessment. They utilized principal
component analysis in finding the most effective
ion to generate secondary ions from the Ru-Pt-
Pd-Ir alloy and Bi+5 was chosen. One impor-
tant part of this study was the automatic clus-
ter peak identification and processing. Several
of the elements they worked on had multiple iso-
topes and comparatively complicated m/z spec-
trum. They created a matrix that can accomo-

7From then on, the interpreter should work a way
through finding out the actual mass. This is no differ-
ent from a complex puzzle, and the complexity increases
with the size of the molecules. There are many reference
spectra and databases to aid in this, some are public, some
are paywalled.

date all species worked in the study with their
corresponding isotops as different non-zero cells
in the matrix. This is then used to create an ex-
pected simulated spectrum from the high-entropy
alloy sample. The real sample also has an er-
ror matrix in their measurements and to mini-
mize this error in retrieving the mixing ratio in
the alloy, a method based on the non-negativity-
constrained linear least squares regression[14] was
employed. They reported that their approach was
highly beneficial in this domain.

Hua et al.[15] employed metal-organic frame-
works (MOF) to enhance per- and polyfluoroalkyl
substances (PFAS). They first solid-phase ex-
tracted the PFAS compounds with the frame-
works and then measured them with the liquid
chromatography tandem mass spectromety (LC-
MS/MS). Among the six different MOFs they uti-
lized, UiO-668 was the best with the 87% ad-
sorption and 85% recovery efficiency for 33 PFAS
molecules.

Weber et al.[16] reported the high-resolution
upgrade of Nano Secondary ion Mass spectrome-
try - NanoSIMS. They reported the updates on
Cs+ source, high voltage control, stage repro-
ducibility, and other parts. They presented the
results of the analyses on aluminium samples con-
taining silicon crystals, microalgae, and fungi-
colonized plant roots, with down to 30 nm lateral
spatial resolution.

Fluorescence Spectroscopy

Nayak and Wilson investigated the cation effects
on uranyl-nitrate9 complexation equilibria with
the time-resolved laser-induced fluorescence spec-
troscopy. They reported that sodium, lithium,
and ammonium cations mostly speciated the
U(VI) into UO2+

2 and UO2(NO3)
+, but tetram-

ethylammonium cation resulted in different, po-
tentially higher-order complexes.

Infrared Spectroscopy - IR

Freitag et al.[17] worked on the wheat qual-
ity assessment by mainly utilizing near-infrared
spectroscopy data. They combined analysis of
variance simultaneous component analysis10 and
near-infrared spectra to examine annual and re-
gional impacts on wheat. They used a bench-
top spectrometer in the 400 - 2499.5 nm range to

8Universitetet i Oslo, [Zr6O4(OH)4] clusters, more in-
formation with a 3D model can be found here.

9This specific complexation is of interest as the spent
nuclear fuel is treated with nitric acid.

10ASCA is like a combination of analysis of variance and
principal component analysis, where we are only checking
for the effect of two different things and their combined
effect. Further information can be found here[18]
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measure the near-infrared spectrum, too. They
reported that the sampling site and year of col-
lection significantly vary the spectra, and also the
protein, starch, moisture, fat, fiber, and ash con-
tent of the wheat.

Nuclear Magnetic Resonance - NMR

Soussi-Therond et al.[19] utilized the Nuclear
Magnetic Spectroscopy and several concepts re-
garding that to monitor glucose-6-phosphate
(G6P) dehydrogenase’s reaction mechanism. Es-
pecially with the dissolution dynamic nuclear po-
larization (dDNP), hyperpolarizing magnetically
active nuclei in cryo temperatures, the researchers
reported the G6P oxidation by the G6P dehydro-
genase and delineated the boundaries of this tech-
nique in studying kinetic models and hypotheses.
NMR peaks in different seconds after the start of
the reaction provides critical details of the reac-
tion pathway.

Microfluidic Sensors

Zhang et al.[20] developed a microfluidic sensor to
greatly speed up the motile plant zoospore detec-
tion with a portable device. They made COM-
SOL simulations on how the electrical field would
response, and also utilized chemotaxis to lure the
spores to the detector. Their devices were con-
structed with photolithography. They were suc-
cessful in detecting zoospores with this method.
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Last week in Remote Sensing

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 24 - September 30,
2024. These are generally based on the preprints
retrieved when “remote sensing” words are given
between quotation marks within arXiv’s cs.CV
and similar cross-fields.

Segmentation

Russo et al.[21] fused Sentinel-1 and Sentinel-2
data for powerful reservoir monitoring. Their
end-to-end deep learning framework included a
spatiotemporal datacube of synthetic aperture
radar (SAR) polarization, elevation, slope, and
Sentinel-2 multispectral bands. The framework
(SEN12-WATER) removes speckle noise from
SAR, segments water bodies with a U-Net ar-
chitecture, conducts time series analysis, and
includes Time-Distributed-Convolutional Neural
Network (TD-CNN) within the Keras-TensorFlow
Python package. Their algorithm was verified
through the result comparison with the ground
truth. Their training included both binary cross-
entropy loss and GapLoss function. They also
aimed to predict the next two months’ water mask
in a frame using the previous 14-month data with
ConvLSTM, Bidirectional ConvLSTM, and Time-
Distributed CNN. Their segmentation was very
successful, and slope, elevation, Sentinel 2 10-
meter spatial resolution bands, and both Vertical-
Vertical and Vertical-Horizontal polarizations of
S1 together produced the highest accuracy. As
for the next frame prediction, TD-CNN had the
highest scores in all three metrics.

Bi et al.[22] constructed the Agent Mining
Transformer - AgMTR, a few-shot segmenta-
tion transformer to alleviate problems arising
from intra-class variability and problematic back-
ground in remote sensing. The method contains
three parts: The first part is the Agent Learn-
ing Encoder, where the agents learn the impor-
tant parts of a specific object, e.g., a plane, sep-
arately (wing, tail, etc.). Then, the Agent Ag-
gregation Decoder explores the semantics of the
unlabeled data and guides the agents to classify-
get enhanced over their targets with this infor-
mation. The last part, Semantic Alignment De-
coder works on the target image, and basically,
it assumes that the same objects are more simi-
lar to each other in terms of pixel-level similar-
ity, and it constructs the pseudo-local mask of
the target/query image. They validated this novel

approach on the iSAID dataset, and also on the
PASCAL-5 and COCO-20 datasets. They out-
performed the R2Net (ResNet-50 and ResNet101
backbones) and FPTrans on the iSAID, PASCAL-
5, and ResNet-50, ResNet-101, FPTrans, and
MuHS on the COCO-20 datasets, too.

Gordon et al.[23] worked on rhino communal
defecation sites, middens identification from 9722
remote sensing imagery (heat-thermal, RGB, and
lidar) of Kruger National Park. They approached
this issue through developing an active learning
method11. They transferred the learned model
from the VGG16 model trained on the ImageNet
dataset. The model used either thermal, RGB,
or lidar, or several combinations of them (fused).
Firstly, they passive learned the data and tested
20%of it, and thermal + RGB and Thermal +
Lidar fused sets were the best in accuracy, preci-
sion, recall, and F1 scores. Then, they chose to
report thermal + RGB fuse in active learning as
well, with very similar test accuracies but drasti-
cally less data requirement (9736 vs 500 images
in training) and runtime (81 hours vs. approxi-
mately 4 hours).

UAV

Zhang et al.[24] described PolRa - Portable L-
band radiometer to mitigate the coarse spatial
resolution problem in remotely-sensed soil mois-
ture products, such as Soil Moisture Active Pas-
sive (SMAP) outputs. PolRa, instead, can be
mounted on towers or UAVs and remotely re-
trieve the soil moisture information in sub-meter
resolution. While having the ground truth with
the handheld Time domain Reflectometry (TDR)
sensor, they also retrieved PolRa brightness tem-
perature data and estimated the soil moisture
from it with several algorithms, and compared
the match with the ground truth by TDR. The
authors stated that in very fine spatial resolution,
PolRa reliably captured the temporal variations
and the unbiased root mean square error values
were lower than 0.04 m3/m3.

Modelling-Forecast

Guzman-Lopez et al.[25] stated that they merged
the agricultural census data and remotely-sensed
data products with sparse regression and Elastic-
Net regularization, and established Granger pre-
dictive causal12 relationships between paddy rice

11Several labeled samples are given to the model. Then
for the following cases where the model would be the most
uncertain, the labeler is queried by the model to label
them, so that with the least amount of labeled images the
concept can be learned.

12Being able to predict a value of a parameter using
another parameter’s earlier value.
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yields and aforementioned data proucts. The re-
mote sensing data came from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) sen-
sor’s MOD13Q1 NDVI data, the precipitation
from the CHIRPS Pentad, and the temperature
was from the MODIS MOD11A1 data product13.
They also took the first and second derivatives
of these predictors and included them as velocity
and acceleration components, such as VEL NDVI.
Then, regression with elastic-net, gradient tree
boosting, and generalized additive models were
employed to predict agricultural yield. The mean
square error metrics favored XGBoost, yet, quite
low training error, and almost 4-times of it in the
validation was hinted at potential overfitting, and
elastic-net regularization was chosen to be best
with a slightly lower validation error.

Object Detection

Zhao et al.[26] proposed the OrientedFormer14,
an end-to-end object detector for remote sensing.
The structure is a backbone and a decoder (con-
secutive application of the self-attention, cross-
attention, and feedforward-feed network). For the
object query, there were separate content queries
and positional queries. For the positional encod-
ing, rather than commonly used horizontal boxes,
they used Gaussian positional encoding (PE). The
datasets they utilized were DIOR-R, DOTA v1.0,
1.5, 2.0, HRSC2016, and ICDAR2015. Oriented-
Former mostly outperformed other algorithms on
all datasets.

13Readers should be cautioned that MODIS is NOT a
satellite but a sensor, and MOD11A1 or MOD13Q1 are
NOT sensors, but data products.

14The code can be found in this GitHub repository.
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Last week in Environmental
Chemistry

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 24 - September 30,
2024. chemRxiv’s Earth, Space, and Environ-
mental chemistry preprints are being surveyed,
and unfortunately, not many preprints are pub-
lished under environmental topics in this field.

Adelodun et al.[27] measured the impact of
the sensor locations on indoor air quality moni-
toring in a controlled, 82.2 m3 room. There were
three different sensors, one directly at the inlet
of the air purifier, another one on the wall, and
another one at a typical breathing height at the
center. Particulate matter sources were incens-
ing, and four of them were placed in different lo-
cations and they were opened one by one. Then,
Particulate Matter 1 (PM1, particles smaller than
1 µm), and PM2.5 were measured. The wall sen-
sor measurements were always lowest in the PM
measurements, potentially, inter alia, because of
its further distance to the polluters, and the other
two sensors were also not completely the same as
each other.

London, Glüge, and Scheringer[28] reported a
multi-criteria decision analysis to replace banned-
restricted chemicals, with specific focus on the
European Union regulation on the Registra-
tion, Evaluation, Authrosiation and Restriction
of Chemicals (REACH) and its substances of very
high concern (SVHCs) list15. Their method was
based on Multi-Attribute Value Theory with dis-
crete value functions. On top of the SVHCs crite-
ria, they also add mobility, high ecotoxicity, global
warming potential, and ozone depletion poten-
tial. Their dataset had two different parts: one
hypothetical and one real. The hypothetical one
has 256 combinations of persistence, bioaccumula-
tive, human and ecological toxicity with very high,
high, moderate, and low options (148 out of 256
have the SVHC characteristics). The real one was
from the 16 alternative chemicals to the decabro-
modiphenyl ether, a persistent organic pollutant
brominated flame retardant. The coefficients were
arranged to ensure a good value does not act like
a trade-off for a bad value, and as a result, having
a very highly hazardous trait penalizes the can-

15This is related to the Article 57 of the REACH, which
contains a) carcinogenicity, b) mutagenicity, c) toxicity
against reproduction, d) persistent, bioaccumulative, and
toxic, e) very persistent and very bioaccumulative vPvB,
f) endocrine disruptiveness, g) probable serious harmful ef-
fect to human health and nature other than listed above
but still nonnegligible.

didate more than what would have been without.
Compared to the GreenScreen benchmark as well,
their decision criteria method placed more empha-
sis on low ecotoxicity rather than persistence or
bioaccumulation.

Laberge-Carignan et al.[29] studied the im-
pact of temperature on selenium mobility un-
der different reductive-oxidative conditions. They
constructed flow-through reactor experiments to
check the impact of various parameters on se-
lenium mobility under environmentally relevant
conditions and selenium concentrations. There
were aged (> 50 years old) and fresh (< 6 years
old organic mater, 4 or 21 degree Celsius tem-
perature, 7, 70, or 100 nM [Se], and HSeO−

3 or
SeO2−

4 selenium-containing species. Then, they
measured the outflow with inductively-coupled
plasma atomic emission spectrometry16. They
measured the outflow for several minutes and cre-
ated temporal profiles. They reported that fresh
organic matter species were more effective in re-
moving selenium, and different selenium species
have contrasting outflow rates under different
temperatures.

16For example, the argon gas heated up to 12000 degrees
celsius to transit into a plasma state, the sample is neb-
ulated to this plasma and the emissions from the atoms
originated from the plasma treatment of the sample are
measured in the end.
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Last week in Data Science-
Applied Statistics

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 24 - September 30,
2024. This is generally from arXiv’s stat.ML (and
correspondingly cs.LG) cross-list. Large-language
model-related, or text-mining and similar studies
are omitted, also several less-application oriented
studies (they, too, are important, but currently
Science Ascend can’t accomodate to review them
within the time constraints.

Denoising

Fan et al.[30] made a curious study on cluster-
ing the speckle noise with their speckle unsu-
pervised recognition and evaluation (SURE) al-
gorithm. They used a 523 nm continuous wave
originated from a laser generator. They exper-
imented this technique in glucose sensing and
harsh-condition multimode fiber (MMF)-based
communication. For MMF dynamic envronment,
2 meter multimode fiber was wound into coils with
a 10 cm diameter and an example environmental
disturbance was simulated by a motorized rota-
tor with a 20 degrees/s constant velocity and two
loose clamps for random friction application. For
glucose, glucose stock solutions were diluted to
two different concentration relevant for a healthy
and hyperglycemic people, respectively. For the
speckle image clustering task, MNIST dataset
with bicubic interpolation from the 28x28 size
to 400x400 was utilized. On the clustering part,
SCAN and SHACK were implemented, where the
former has a convolutional neural network for fea-
ture extraction and a fully connected layer for
clustering and an overclustering, and the latter
is an hierarchical agglometarive clustering. The
results were satisfactory.

Time Series

Katende[31] constructed a framework to im-
pute missing data and analyze the struc-
tural transformation (the shift from a domi-
nant agrarian economy to a diversified industrial-
service economy) for country-sector-year dimen-
sions economy-related values with low-rank ma-
trix assumption, Bayesian hierarchical modelling,
and machine learning - Least Absolute Shrinkage
and Selection Operator (LASSO). Bayesian Hier-
archical Modelling had the following main equa-
tion for each country-sector element =

yit N(µit, σ
2)

and for the µit:
µit = β0 + β1Xit + γi + δt
where β0 is the intercept and β1 is the slope of
Xit, where this is the covariates, such as public
investment, where these can be relevant for each
country-sector, γi is for the random effects, and
δi is global trends. They reported better results
of this approach in their simulation study, and its
high predictive accuracy persisted even with only
40 % of the data available.

Elborough et al.[32] devised a way to com-
pute Shapley values17 for time-series-like data,
just as in image processing super-pixel cases to
not overload the resources. Their sample case was
forensic DNA classification. Their Shapley val-
ues were region-block-like rather than for every
value-allele-gene. The base model was a convo-
lutional neural network, constructed in R v.4.2.3
with the Tensorflow, Keras, dplyr, and SOAR li-
braries. The Shapley value was calculated as fol-
lows:

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[f(xS∪{i})−f(xS)].

(1)
The way to calculate these values to the blocks

was the Kernel SHAP algorithm. They iteratively
shrank the part to calculate Shapley values by
starting from each dye lane, selecting the largest
Shapley value, and partitioning these parts, and
repeating the process. In this way, less Shapley
computation is required, but the result might still
be quite specific. They were successful in making
this case rapid and explainable.

Caljon et al.[33] studied the impact of dynamic
loss weighting applied in the training phase of
time-series forecast models on both accuracy and
stability. In other words, they looked for ways
to increase forecast stability without undermining
the accuracy. Their approach, Task-Aware Ran-
dom Weighting was found to be the best among
other methods. Forecast stability means the dif-
ference in the forecasted value of the same time-
step for two consecutive estimations. The total
loss estimation considers both the error in the ob-
servation and the stability. For instance, in the
case of the N-BEATS-S network, there is a static
coefficient on putting a weight for these losses, and
the error term considers both the error in previ-
ous occasion and the present occasion, while the
stability considers the difference in the forecasted
value of previous occasion and present occasion.
Finally, dynamic loss weighting changes this static
coefficient to a dynamic one, essentially putting

17A way to increase the explainaibility of artificial intel-
ligence.
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different weights on the model accuracy and sta-
bility while calculating the loss. Among the differ-
ent options to tune this, their way was randomly
sampling a coefficient from a uniform distribution
that is always smaller than κ, which is the tunable
hyperparameter and can prevent excessive prior-
itization of the model stability over its accuracy.
Their algorithm was better than GradNorm, Un-
certainty Weighting, Random Weighting, Gradi-
ent Cosine Similarity, and Weighted Gradient Co-
sine Similarity.

Marx, Kuleshov, and Ermon[34] worked on
outlining a robust forecast uncertainty reporting
framework even in the presence of unpredictable
distribution shifts, feedback loops, and adver-
sarial actors. They made use of the Blackwell
Approachability and game analogies and gener-
ated practical algorithms as well, and reported
that in the end, the forecast and calibration for
the energy systems can be improved with their
strategy. Qin et al.[35], too, considered the is-
sue of distribution shifts in the time series data
and proposed the Evolving Multi-Scale Normal-
ization framework18. The first reason to do this
was the multi-scale different variations in reality,
such as annual or weekly variations. Periodicity
extraction utilizes the Fast Fourier Transforma-
tion (FFT) technique. The following step’s slices-
windows to create statistics will be prepared ac-
cording to the periodicities extracted by the pre-
vious step. In other words, a “normalization”
will take place, then, a denormalization will try
to model the non-stationarity with a backbone
forecasting model after concatenating the denor-
malized slices. In the last multi-scale adaptive
ensemble, the local periodicity is also calculated
by the FFT. The EvoMSN improved many differ-
ent backbone forecasters in almost all cases and
metrics, and it was the best among the online
learning strategies Online-TCN, FSNet, Experi-
ence Replay, DER++. The EvoMSN was also the
best in most cases considering the normalization
methods SAN, RevIN, Dish-TS.

Machine Learning / Deep Learning

Hoang[36] considered the poison of dimensional-
ity, very-high model size-originating problems in
the machine learning, as well as posion coming
from the data, where especially in social media
and human-related data, the assumption of “data
is honest” is unrealistic. The author aimed to
check the impact of the model size on the secu-
rity of the model with changing the number of
honest (H) and poisoned (P) data. They stated
that if the number of dimensions is higher than
169H2/P 2, the security is impossible, and they

18The GitHub repository for the EvoMSN is here.

worked on the ones smaller than that size and
presented the poison data impact on the model.
They also considered dimension reduction and
also stated that the number of dimensions for the
optimum case is related to the H/P.

Wang and Li[37] focused on better theoreti-
cal and practical comprehension for the out-of-
distribution deviation-shift mitigation in machine
learning applications. They stressed the impor-
tance of out-of-distribution generalization, such as
being trained in birds in cages, then, being able
to classify birds in forest as birds, too. More-
over, novel semantics may also be encountered,
like no training on dogs, and getting images in-
cluding dogs, and these should not be misclassified
with something from the model’s training data.
They approached this issue with a graph-theoretic
framework and utilized singular value decomposi-
tion to understand the impact of these wild data
on the model. They found this is better than the
state-of-the-art Scone.

Modelling

Paul et al.[38] worked on parameter-efficient fine-
tuning (PEFT)19 methods for Depth Anything
vision foundation model’s post-hoc Bayesian in-
ference. Their domain was monocular depth es-
timation. They tried the Stochastic Weight Av-
eraging Gaussians (SWAG), BitFit, DiffFit, and
CoLoRA. They conducted experiments with the
DINOv2 and DPT encoders, worked on continu-
ing fine-tuning with the checkpoint records, and
used the NYU and KITTI datasets. Especially
on the KITTI dataset, the CoLoRA approach was
the best choice.

Bourdais and Ohwadi[39] studied the model
aggregation and how it can be optimized via min-
imal error aggregation and minimal variance ag-
gregation metrics. They took the models as black
boxes of input-output functions without assuming
much about their nature. They chose to aggregate
models in a point-wise linear manner, and they
also presented examples of how simple-averaging
on the individual utility of the models is far from
the real case. In the end, they showed the out-
performance of minimizing variance compared to
minimizing empirical error.

Wang, Yin, and Li[40] considered a debiased
semi-supervised learning training phase while
finding ways to reduce the confirmation bias with
the TaMatch framework. They reported that
batch sizes should be large enough to reduce the
bias amplification. A critical detail is strong and

19This is an approach to still be able to tune very-
large, very high number of parameter-including models
even while using modest computing resources. It only
tunes some of the parameters, hence preventing catas-
trophic forgetting and overfitting issues.
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weak classes, where the truth probability of a
class is lower than the expected marginal distri-
bution of the model or vice versa, the class is de-
fined as strong and weak, respectively. The de-
biasing is expected to happen if the strong class
is suppressed and the weak class is augmented.
TaMatch mostly outperformed many other al-
gorithms in CIFAR-100, STL-10, and EuroSat
datasets, and it was also better in several other
aspects.

Jiang, Lu, and Willett[41] worked on the
simulation-based inference method Embed and
Emulate (E&E). Briefly, E&E learns the low-
dimensional latent embedding (like summary
statistics) and a fast emulator in the latent space.
Their method successfully ignores the redundant
parameters and also is able to work with the
Lorenz 96 system. E%E was better in perfor-
mance against the NRE-C and NPE-C in terms
of maximum mean discrepancy metric.

Zhang and Cao[42] closely examined a con-
trastive learning20 method SimCLR on their
preprint. They both theoretically worked on
SimCLR and also empirically with a toy image
dataset from the MNIST. SimCLR was quite ben-
eficial in reducing the labeling complexity.

Li and Yan[43] studied the theoretical basis of
the empirical success of the diffusion models with
minimal assumptions. The core idea of such mod-
els is completely generative. From the one side, a
sample X0 is drawn from the target distribution it
is progressively transformed into a pure Gaussian
noise. Conversely, YT starts from the pure Gaus-
sian noise, and step-by-step it is converted to the
target distribution at Y0. X and Y samples’ dis-
tributions are kept close when their subscript is
equal to each other. They succeeded at providing
a framework with minimal assumptions compared
to other similar works in literature.

Optimization

Liang, Neufeld, and Zhang[44] made a conver-
gence analysis on the stochastic gradient Hamilto-
nian21 Monte Carlo (SGHMC) algorithm22 with
discrete stochastic gradients. They applied the
SGHMC to quantile estimation for the Gaussian,
logistic, and Gumbel distribution, then, for regu-
larization of the ReLU networks in solving opti-
mization problems. They found it to be superior
to SGLD, TUSLA, ADAM, AMSGrad, and RM-
SProp optimizers.

20First, a large amount of unlabeled data is shown to
the algorithm. Then, labeling and supervising is provided
as a fine-tuning.

21Further information on Hamiltonian and relevant con-
cepts can be found here.

22The GitHub repository for the SGHMC is here.

Bender and Thuan[45] worked on the re-
inforcement learning’s modeling of exploration.
They formulated a new stochastic differential
equation according to the sampling on a discrete-
time grid, utilized random measures in addition to
the Brownian motion and Poisson random mea-
sures, and proved a limit theorem where the sam-
pling grid mesh size approached zero. They stated
that this grid-sampling limit SDE can replace ex-
ploratory SDE.

Hwang and Lim[46] improved a Physics-
informed Neural Network in solving partial differ-
ential equations with their Dual Cone Gradient
Descent optimizer. Their numerical experiments
with three partial differential equations (PDEs)
showed that this approach outperforms all other
common optimizers used in the study.

Scheidt et al.[47] crafted a way to solve a
False Discovery Rate-Controlled Sparse Regres-
sion problem with so high variables in a drasti-
cally less memory-requiring way, capable of being
computed in a normal laptop computer. For this,
they utilized memory mapping and also dummy
permutating concepts to the Big T-Rex Selector.

Probability

Wu et al.[48] worked on conditional testing with
localized conformal p-values. They show exam-
ple applications via a conditional outlier detec-
tion case, conditional label screening problem,
and two-sample conditional distributing testing
problem.

Zhang and Candès[49] introduced posterior
conformal prediction (PCP)23 method. PCP re-
quired smaller sets than the standard competitors
in classification.

23The GitHub repository to implement this method is
here.
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fonte, E. Pérez-Fernández, A. Aller, A. Draz-
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