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Last week in Astrophysics

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 16 - September 23,
2024. These are from arXiv’s astro.EP cross-fields
without high-energy main cross-list papers.

Stellar Systems - Populations - Clus-
ters

Cooper et al.[1] acquired low and middle resolu-
tion (R 300 and R 2500)1 optical spectroscopy
of 53 late M and L ultracool dwarfs in the Solar
neighborhood with the Optical System for Imag-
ing and low-intermediate Resolution Integrated
Spectroscopy - OSIRIS of the Gran Telescopio Ca-
narias at El Roque de los Muchachos, La Palma,
Spain. They stated that this study is the fourth
of the Gaia UltraCool Dwarf (UCD) sample se-
ries, which aims to characterize all Gaia visible
UCDs. They determined their samples’ spectral
types, spectral indices, and radial velocities from
OSIRIS spectra, and effective temperature, sur-
face gravity, and metallicity [Fe/H]2 astrophysi-
cal parameters were inferred by comparing with
atmospheric models. They reduced the data with
the PypeIt3 reduction procedure and compared
it with the standard IRAF tasks on the J1745-
1640 object, and found agreement in the part
of the spectrum with longer wavelengths than
9800 angström. Analysis was done with the rvfit-
ter package. Throughout the analysis procedure,
specutils, kastredux packages were also utilized.
They determined the radial velocity values from
the middle resolution (R 2500) spectra. With this
study, 29 of the 46 objects gained a radial velocity
estimation for the first time. Two objects were
outside of the thin disc4 and four in the young
stellar kinematics group.

1This R is the resolving power and is calculated as R
= λ/δλ, where λ is the wavelength and the denominator
is the minimum wavelength difference that can be resolved
with the resolving power R. A higher R-value indicates a
finer detail in terms of the wavelength in the spectrum.

2This iron/hydrogen abundance is in dex - decimal ex-
ponent, e.g., Fe/H 1 dex means 10+1 times more metallic-
ity than Sun.

3PypeIt can be reached here.
4Thin disk is a part of galactic components. From inside

out,the Galactic center is the center, the bulge is around
this center, the thin disc is a mostly planar disk around
this bulge, the thick disc is farther away over this thin disc
and slightly more rarefied. Finally, the Galactic halo is the
most rarefied component of a galaxy, a halo encapsulating
all other components. Objects are placed in these groups
here according to the total space velocities.

Simulation-based studies

Gautam, Farias, and Tan[2] made N-body simula-
tions to measure the impact of the surrounding in-
terstellar environment within star clusters on pro-
toplanetary disk (PPD) formation. Their method
was a gradual semi-analytical model of PPD for-
mation in N -body way together. Their model
basis is Turbulent Clump Model5. PPD was as-
sumed to be 10% of its star mass and modelled
for every star. Additionally, the perturbing star
also impacts the disk radius and its truncation.
Finally, external photoevaporative irradiation in
the interstellar medium also results in mass loss
at the outskirts of these disks. Nbody6++ was
used for the gradual star cluster formation out-
lined in this study. They reported many insights
regarding the impact of initial conditions in the
stellar cluster on disk truncation, and in the com-
parison of their results with the discs in the ONC
and G286 star-forming region, they could match
some of their models with these discs. They also
stated that the inner core of star clusters has more
truncated discs than the outer ones with more ac-
tive disc depletion mechanisms.

Single Star System (Star, Exoplanet)

Barnes et al.[3] stated that radial velocity (RV)6

method of exoplanet detection requires the un-
derstanding and removal of stellar activity from
the estimated exoplanet-originated signal. Their
approach is analytically modeling cool and facu-
lar spots and calculating their impact on central
line moments7 (CLM), which is used in RV cal-
culation. They also applied this method to the
AU Mic8 M dwarf star. The common methods
mostly include cross-correlation function9 to find
the spectral shift magnitude, and bisector inverse
span, to distinguish stellar noise-related spectrum

5The clump is a polytropic sphere of gas, polytropy
comes from pressure-density relation in this context. De-
tails can be found here.

6The second highest number of exoplanet-detecting
method. Basically, it measures stellar movements indi-
rectly from the blue-red shifting of its light owing to the
system’s center-of-mass distance from the stellar core be-
cause of exoplanets.

7It is a statistical way to describe the sample distri-
bution. These are the mean, standard deviation, kurto-
sis/skewness and similar terms regarding the distribution.

8AU comes from the variable-star designation according
to the detection order of the star in its respective constel-
lation, Mic is from the Microscopii constellation.

9Basically, it is used to estimate a time-series with an-
other time-series in different lags. One may correlate eat-
ing Salmonella spp. containing food and getting diarrhea
in let’s say, 16 hours of time lag, or generation of sunlight
with reaching it to our Earth by 8 minutes, etc. In radial
velocity calculation, the index of the data is wavelength
instead of time, and the aim is matching the spectral line
of a reference or synthetic spectrum with that of a real
observation.
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line distortion from the Keplerian signal. The de-
tails of their methodology are as follows: They
used the Doppler imaging code DoTS to simu-
late line profiles for selected rotation angles with
a specific signal-to-noise ratio then directly cal-
culates CLM for each of them. They generated
absorption lines from three different temperature
models and specific spot-filling factors. Line pro-
files were calculated by considering cool spots, M
dwarf and G dwarf facular contrasts, and convec-
tive blueshift10. They constructed the stellar sur-
face pixel-by-pixel with different intensities of cool
spots, facular regions, or the photosphere. Then,
they experimented and reported central line mo-
ments from the single spot models and scaled
multi-spot models. They reported that meth-
ods such as the generalised Lomg-Scargle peri-
odogram interpretation mostly result in the recov-
ery of a harmonic of the true stellar rotation pe-
riod, as they assume sinusoidal variability. They
instead recommend string length minimisation11

for this.
Maggio et al.[4] concentrated on the youngest

known star HIP12 67522 (around 1.2 solar mass)
with a transiting multi-planetary system. They
wanted to have extreme UV (EUV), but it was
unavailable owing to the strong interstellar ab-
sorption, so they estimated EUV from the Far
UV (FUV) from the Hubble Space Telescope
(HST) and X-ray from the X-ray Multi-Mirror
Misson (XMM) Newton. Time-resolved spectra
acquired signals from the star’s quiescent and flare
periods separately, as well as corona and chro-
mospheric temperature using Reflection Grating
Spectrograph (RGS) for XMM-Newton and Cos-
mic Origin Spectrograph for HST. They reduced
XMM-RGS data with XMM-SAS version 20.0.0
whereas for HST, analysis-ready data was down-
loaded from the HST archive. Emission Mea-
sure Distribution was obtained with PoA Software
Monte Carlo Markov Chain procedure with the
atomic line emissivity database of Chianti v. 7.13.
They used ATES Hydrodynamic code13 to model
atmospheric mass loss rate which results from the
stellar irradiation. As expected from a young star,
even its quiescent period is very active with x-ray
luminosity around 3x1030ergss−1. For the range

10Blueshift of the spectrum originated from convection
in the stellar atmospheres.

11Repeated phase-folding of the data and iteratively
finding the best match for estimating the sinusoidal pat-
tern. In the perfect case of folding a single sinusoidal wave
according to its period, there is 0 string length between
the data points in consecutive phases. The real data has
more than a perfect single sinusoidal wave, but getting
this distance between the consecutive phases in the same
location in the x-axis shorter and shorter, the period for
phase-folding gets near to the stellar rotation period.

12From the European Space Agency’s Hipparcos catalog.
13ATES GitHub repository

of core and atmosphere fraction, the planet may
lose its atmosphere in several million years versus
it might take more than 10 billion years.

Biagini et al.[5] made a photometric analysis
in multiple wavebands for V1298 Tau to model
spots’ contribution to the stellar photometry so
that they can remove this factor and study the
young active planetary systems later. They chose
to approach this problem with multiple waveband
spectra since they expected that at longer wave-
lengths stellar and spot fluxes differ from each
other less. Their telescope was Ritchey-Chreiten
from the Osservatorio Polifunzionale del Chianti
(OPC), an 80 cm diameter main mirror, 20 x 20’
fielf of view, and Johnson filters in BVRI (blue,
green (v is similar to vert, meaning green in Ro-
man languages), red, and infrared). The stellar
rotation period was known to be approximately
2.8 days and their observation campaigns took
place in 1 and 2 days generally. They estimated
the spots with the PyMultiNest v2.12 Python
package which used a fitted sinusiodial with an
offset to the lightcurve. ExoTETHyS package was
used for limb-darkening effect14. They found their
approach beneficial and also validated it on solar
data.

Thanathibode et al.[6] constructed a new
model for accretion shock-originated15 carbon
IV 1548-1550 Angström doublet line of T Tauri
Stars16. This carbon emission was generally
found related with the accretion of the inner
protoplanetary disk materials. They consider
both the geometry of this accretion via star and
disk geometry, as well as 1D pre- and post-
shock calculations. Cloudy[7] emissivities were
used for post-shock density and temperature cal-
culations. The temperature and flow velocity
of the materials were decisive in the broaden-
ing of the line peaks and which line was to
be the dominant emission line. After these,
they used Hubble Ultraviolet Legacy Library
of Young Stars as Essential Standards Direc-
tor’s Discretionary Program (ULLYSES)’s data of
con-temporaneous UV-Infrared spectroscopy and
ODYSSEUS, and PENELLOPE programs, and
also Very Large Telescope’s high/moderate reso-
lution spectra. Their chosen sample set was from
Orion OB1 and σ Ori regions. They obtained
all required parameters for their modelling ex-
cept truncation radii from the literature fo such

14The limb is darker than the center/core of the star.
Basically, the light from the core directly comes towards
us, while the ones from the limbs pass through a more
stellar/solar atmosphere and can reduce, in the Sun’s case,
by as much as 20 %. More information can be found here.

15Matter falls on the star and this generates a shock.
16The name originates from the ternary-triple variable

star T Tauri, which means from Taurus constellation.
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studies, calculated truncation radii17 from the
PENELLOPE program’s spectra with the magne-
tospheric flow model from Muzerolle et al.[8]. In
the end, they separated C IV emission lines into
broad (preshock) and narrow (postshock) compo-
nents and they found differing origins and factors
behind these narrow and broad components. Four
out of seven of their samples from the ULYSESS
Orion OB1 were fitted well, and they had subso-
lar carbon abundances in their inner disks. Their
approach was beneficial and had room for devel-
opment considering different geometries.

Malla et al.[9] reported on the inconclusive
status of low-luminosity (retired A-stars) mass
offset in measurements with the spectroscopic,
interferometric, and asteroseismologic methods.
They used the data from the Transiting Exo-
planets Survey Satellite (TESS) with zero pixel
quality flags and PDCMAP18 (Pre-search Data
Conditioning Maximum A Posteriory), high-pass
filtered (3 microHertz, around 4 days) the data
to remove slow trends (and for 24 Sex and HD
185351 50 microHertz). The outliers were as-
sumed to be higher than four times the standard
deviation in the sample, hence they applied 4− σ
clipping. After also several manual removal of
the sudden changes in time-series above 4-σ, they
normalized the lightcurves from every sector by
sector-median division and combined them. They
applied discrete Fourier Transform to calculate
power density spectra, and then, for the maxi-
mum acoustic power and large frequency of sepa-
ration, SYD pipeline19 was applied. After these,
92 low-luminosity and 157 high-luminosity targets
were selected to further work out of all 451 star
samples. The stellar mass determination step had
two different ways for asteroseismic-based ones,
one from individual estimations using the maxi-
mum acoustic frequency or large frequency sepa-
ration, and one combining both. These are em-
pirical equations with ratios of maximum acous-
tic frequencies, luminescence, and temperature,
and combining two of them also discards the lu-
minosity end reduces the temperature measure-
ment impact on the mass determination. They
also tried to fit for the mass-dependent mass offset
in comparing spectroscopic and seismic mass es-
timations with polynomials and benefitting from
the Bayesian Information Criterion. In the end,
they were able to expand the mass offset with 249

17Truncation radius is related to the protoplanetary disk
truncation, and was generally assumed to be 5 times the
stellar radius.

18Coming from co-trending basis vectors, as explained
in previous issues, it measures cotrend in irrelevant loca-
tions in the images and assumes that this comes from non-
celestial redundant instrumental error nad similar origins.

19A Python adaptation can be found here, SYD comes
from Sydney, Australia.

new samples.

Simulation-based studies

Li[10] created the Python package Toy Coron-
agraph20 to estimate, understand, and develop
ways to overcome exozodiacal dust21 problem in
coronagraphic image acquisition studies better
and faster. The author emphasizes the light-
scattering impact of such dust and its detrimen-
tal effect on the process of direct imaging of exo-
planets. Such light scattering would make the en-
tire background brighter and requires even higher
contrasting power to detect exoplanet-specific sig-
nals. Toy Coronagraph package’s contribution al-
lows more details of this light-scattering impact to
be modeled and considered compared to the avail-
able simulators. Both the input dust disk image
and coronagraph point spread function (PSF) are
circularly symmetric for better computational effi-
ciency. The package multiplies the dust disk and
PSF values for each radius with the 2πr factor,
and this is being done for the entire circle, and
finally, the sum result was divided by the num-
ber of rotations it took to calculate this. Further-
more, the author defined a “Core Throughput Re-
gion” where the ‘core from a point-source like a
star starts from the brightest pixels and expands
until coming to a neighboring pixel where it is
less than half of its brightest neighboring pixel.
This approach permits the calculation of both
the effectiveness of stellar light suppression by the
coronagraph and the possibility of detecting the
exoplanet in the middle of dust light-scattering.
Many parameters can be tuned. The package
comes with the MCFOST[11]-generated Epsilon
Eridani dust disk, allows different PSF genera-
tions, with a user-friendly interface.

Marigo et al.[12] extended the AESOPUS
Rosseland mean gas opacities22 to high-pressure
environments and broader density and tempera-
ture conditions to also accommodate sub-stellar
objects and very low mass stars. The Rosse-
land mean opacity is calculated by: R = ρT−3

6

where ρ is density and T6 is million Kelvins.
They also explained ionization potential depres-
sion (IPD) impacts at higher densities, where this
becomes relevant to calculate in their extended
higher-density regions. An increased number den-
sity of electrons and ions reduces the general-
ized Debye length23, which increases the IPD.

20Toy Coronagraph can be retrieved from here.
21This is related to the dust in other stellar systems than

Sun, zodiacal is related to the solar system objects’ appear-
ance in the sky, and in this context zodiacal dust would
mean solar system dust.

22Inversely related to the transmissivity. It is a measure
of the extent of how much light is absorbed or scattered
while passing through a specific medium.

23Measures a single charge’s electrostatic effect in a so-
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AESOPUS also considers this IPD. They include
thermal motion-induced Doppler broadening and
pressure-induced pressure (Lorentzian) broaden-
ing, as well. Additional broadening parameters
were retrieved from the ExoMol database when
available, and a total of 65 astrophysics-relevant
molecular species were included. Later, they re-
ported Rosseland mean opacities with solid grains
and also considered the novel approach’s impact
on stellar models of especially low mass ones, be-
tween 0.1-0.85 solar masses. They provided the
results and the new AESOPUS web interface here.

Sajadian and Afshordi[13] simulated the TESS
light curves of self-lensing and eclipsing cases by
compact companions (white dwarf (WD), neutron
star (NS), or stellar-mass black hole (SBH)). They
considered edge-on cases, hence transit/eclipse
events were included in the simulations. Ellipti-
cal orbit by Kepler’s equation was solved numeri-
cally, the Einstein radius regarding the self-lensing
events was explained and relevant constants and
equations were given. While lensing takes place,
occultation (the compact object masks a part of
the source star directly) and eclipse (the source
star is in front of the compact object) occur,
too, and they should be considered. They pro-
ceeded to make different light curve simulations
and the peak shapes and relative intensity changes
in the normalized flux with changing compact ob-
ject mass, source star radius, orbital eccentric-
ity, and limb-darkening coefficient. They chose
events shorter than 365 days, used 2-min cadence
TESS data, and in general, observation time spans
changed between 27.4 days to 356 days accord-
ing to the chosen candidate target lists for this
study. Especially WD and NS binaries had de-
tectable impacts in both high-confidence (higher
signal-to-noise ratio) and low-confidence cases.

Sun

Liu et al.[14] reported the last two decades largest
magnitude geomagnetic storm from May 2024, us-
ing GOES EXIS (while trying to associate the
coronal mass ejections with the flares, SOHO,
WIND, and STEREO-A. They focused halo erup-
tions24 as candidates most effective on the Earth,
further examined the geo-effectiveness, and also
checked solar wind at a distance of 1 astronomical
unit (AU). They compared two separate complex
ejecta from Sun and in halo eruptions also plot-
ted GOES on top of SOHO and STEREO A data
acquired between May 8-14, 2024.

Penza et al.[15] estimated and reconstructed

lution. The higher it is, the more isolated/screened the
ions are and the lower influence.

24They appear as halo/ring-like structures on white-light
coronagraph that monitors the Sun.

total solar irradiance (TSI) starting from the open
solar magnetic flux dataset between 971 common
era (CE) and 2020 CE. The idea is to use surro-
gate variables to estimate TSI as its direct mea-
surements began in the 1970s. Very roughly, they
estimate the historical solar magnetic field from
the cosmic ray flux to the 14C measurements in
tree rings. They estimated spots and faculae as
well. Empirical Mode Decomposition25 was uti-
lized to decompose data. Their results were gen-
erally in line with the literature.

Instrumentation - Software

Gordon et al.[16] reported James Webb Space
Telescope (JWST) Mid-Infrared Instrument
(MIRI) Imaging and Coronography absolute flux
calibration. The data they used were from the
same data of Cycle 1 and Cycle 226 flux calibra-
tions, and commissioning period. The reduction
pipeline was jwst version 1.51.127. They chose
to use the MIRI imaging reduction pipeline for
the coronagraphy as well, and they included
different subarray28 formations. They utilized
band-specific point spread functions (PSF) for
the aperture and background annulus and with
the photutils Python package. The temporal
change in the instrument’s flux measurement was
estimated with a known very low intrinsically
variable BD+60 1753 dwarf star. They reported
an approximately 22 % degradation for the filter
F2550W29, and the degradation got smaller with
the smaller wavelength. They also reported
subarray, source, and detector dependencies, and
no considerable dependency was found for source
and detectors after the subarray correction.

Blunt et al.[17] reported the version 3 of or-
bitize! 30.

25Cubic spline fitting of data with several criteria to sep-
arate it into intrinsic mode functions which capture oscil-
lations, and the residual contains trend.

26Cycles are yearly observation programs that start on
July 1st of the year.

27jwst pipeline is in three different steps, detector1, im-
age2, and image3, in which the first one aims to correct
instrumental errors, the second one subtracts background
and generates rectified 2D products after the flux calibra-
tion, and the third one register it in world coordinate sys-
tem (WCS) better, match the background, segment the
image, and create a source catalog.

28A part of the imaging array, which can be utilized for
other purposes.

29F means filter, there can also be grating. 2550 is 25.50
micrometers wavelength, and W is wide, basically, a wide
filtering window instead of a very narrow peak.

30The GitHub repository for orbitize! is here. Bayesian
modeller software in the Journal of Open Source Software.
This software aims to aid in retrieving the orbital param-
eters of binaries from time-series data, especially for high-
contrast imaging. The paper in this case informs the read-
ers of new features since its version 1, such as joint-fitting
of radial velocities of both the primary star and its compan-
ion, fit absolute astrometry including Hipparcos-Gaia ac-
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Cox et al.[18] introduced the optical-
photothermal infrared (O-PTIR) method to the
planetary science community. They stated that
this technique is better in performance consider-
ing the spatial and spectral resolution together.
Most peaks in this and FTIR also coincided with
each other. Moreover, this method may still work
without a sample preparation step.

celerations and intermediate astrometric data, nested sam-
pling backend via the dynesty31 Python package, 2 ways to
handle multiplanet effects, and the ability to fit in differ-
ent orbital bases and using priors from observations. The
static nested sampling improves error in evidence, but for
better posterior estimation efficiency, a dynamical way to
trade-off evidence accuracy in favor of posterior estima-
tion is choosing live points in variable numbers through
the runs. Shortly, this can be seen as an alternative to the
Monte Carlo Markov Chain methods in handling the data
and estimating the posterior.
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Last week in Chemistry

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 16 - September 23,
2024. They are more in nature of spectroscopy
alone, and hence several studies regarding bio-
chemistry, chromatography, and several other
disciplines might be missed here.

Mass Spectroscopy

Zemaitis et al.[19] worked with fresh frozen
pancreas tissues and tried to disentangle ma-
trix impact on the matrix-assisted laser des-
orption/ionization (MALDI)-mass spectrometry
imaging (MSI) analysis of these living tissue sam-
ples. Firstly, they report that washing the sam-
ple with ammonium formate reduced the polymer
contamination of the spectrum, especially in neg-
ative ion mode. Positive ion mode had higher
persistent polyethylene glycol polymer contami-
nation. They reported the data in the following
link.

Rosales et al.[20] worked on better detections
of opioids, amphetamines, and psychedelics with
trimethylation enhancement using diazomethane
(TrEnDi) to increase MS sensitivity on 13 differ-
ent drugs. Aprotic solvent system for electrospray
ionization made it even much more sensitive.

Fluorescence Spectroscopy

Elliott et al.[21] used fluorescence spectroscopy
with parallel factor analysis (PARAFAC) to de-
termine the time-since-deposition of bloodstains,
an important metric in forensic investigations.
They tested this in bovine blood collected with
and without anticoagulants. They conducted
excitation-emission matrix (EEM) measurements
with 250-500 nm excitation in 5 nm steps and
measuring every nm between 280-750 nm, and
in the second EEM, excitation was done between
350-600 in 5 nm steps and 400-700 nm were
measured. After several post-processing steps,
they also removed Rayleigh and Raman scatter-
ing peaks from the spectra. They analyzed the
data with staRdom’s library in R Statistical Soft-
ware. They fused all of the EEM data and con-
structed four different regression models to pre-
dict the time-since-deposition (TSD) values: 1)
Boruta feature selection and random forest regres-
sion, 2) Random Forest regression with no fea-
ture selection, 3) partial least-square regression
(orthogonal scores algorithm, pls library), and 4)

Elastic Net regression (glmnet library). Hyperpa-
rameter tuning and model performance evaluation
were done with 5-fold cross-validation. A total
of 42 eluates were prepared for mass spectrom-
etry analysis with a High-Performance Liquid
Chromatography-Mass Spectrometry/Mass Spec-
trometry (HPLC-MS/MS). Even though the re-
sults were generally above 0.95 adjusted R2 val-
ues, among them Boruta feature selection followed
by random forest regression was the most accurate
one.

Microscopy

Mukherjee et al.[22] applied data analysis tech-
niques to disentangle heterogeneity on materi-
als via the k-means clustering technique. They
worked on caesium lead bromide nanocrystals,
and data analysis included estimating the opti-
mum number of clusters, categorizing the ata, and
cluster-wise power spectral density analysis. sil-
houette score, Calinski-Harabasz index, and the
elbow method were utilized to find the optimum
number of clusters. They ran the code in epochs
of 100 to reduce the discrepancy potentially origi-
nating from the randomly chosen initial centroids
in k-means clustering and took the mean of in-
dices mentioned above. Their initial clustering
results were unsatisfactory, and to mitigate this,
they looked for discrete wavelet transformation
assisted noise-flattening and data binning tech-
niques to reduce the dimension of the data. While
the wavelet analysis did help, subsequent data
binning resulted in even better misclassification
scores with values reaching 0.044 out of 100 iter-
ations. The optimum cluster number was found 3
in all approaches and power spectral density pro-
files were different for each classes. They also ap-
plied this method to real time spectroscopy data

Biosensors

Zhang et al.[23] worked on a universal oxygen
scavenger for extending oxidase-based biosensor
lifetime and facilitating their storage, as well
as reducing the oxygen interference. They re-
ported that a combination of alcohol oxidase,
paraformaldehyde32, and catalase enzyme scav-
enges oxygen and prevents its interference. They
specifically focused on glucose oxidase, commonly
used for blood sugar sensing.

Infrared Spectroscopy

Olivares et al.[24] measured and corrected the im-
pact of temperature fluctuations on near-infrared
spectra of raw milk samples. They worked with

32Formaldehyde polymer
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270 samples and took the spectra at 20, 25, 30, 25,
and 40 degrees of celsius. The methods to correct
these variations in the study were piecewise direct
standardization (PDS), continuous PDS, external
parameter orthogonalization (EPO), and dynamic
orthogonal projection (DOP). The actual method
to monitor the milk composition is partial least
square regression (PLSR), and the preprocessing
methods above were applied before that to see
if they better the results. These preprocessing
methods significantly improved the results, and
the EPO and DOP were superior to the other
cases and the case where there was no prepro-
cessing method.

Nuclear Magnetic Resonance

Silva[25] utilized machine learning classification
methods for molecular structure estimation via
1H NMR spectra interpretation. The suite of
methods included k-nearest neighbors, decision
tree, support vector classifier, extra trees, ran-
dom forerst, and gradient boosting in sklearn
package in Python environment. The 1H NMR
spectra database used in the study was from
NMR Challenge33. The class imbalances in the
functional groups were mitigated with oversam-
pling via Synthetic Minority Oversampling Tech-
nique (SMOTE) variations, Borderline SMOTe
and SVMSMOTE, and adaptive synthetic sam-
pling (the reason for choosing them was practical,
as they were easy-to-use from imblearn Python
package). The best result was the application of
SMOTE, then, random forest with an 0.88 accu-
racy score.

Electrochemistry

Seymour et al.[26] devised a method and instru-
ment that can detect dissolved oxygen down to
0.36 pm detection limit even in the presence of
chlorine and iron by converting it to hydrogen
peroxide and measuring that species. Another
superior characteristic of this device is that it is
membrane free.

33The challenge website can be found here.
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Last week in Remote Sensing

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 16 - September 23,
2024. These are generally based on the preprints
retrieved when “remote sensing” words are given
between quotation marks within arXiv’s cs.CV
and similar cross-fields.

Sharpening-like Methods

Wang et al.[27] worked on fusing hyperspectral
images with multispectral ones having higher spa-
tial and temporal resolution. They reported a
blind fusion method based on deep Tucker decom-
position34 and spatial-spectral manifold learn-
ing35 to overcome previous algorithms’ shortcom-
ings on data representation, compression, and fea-
ture extraction. They reported that their novel
approach performed better than available cases,
and their code can be found here.

Diakogiannis et al.[29] worked with Sentinel-
2 Multispectral Imager and Sentinel-1 (radar)
time series data together to eliminate cloud cover-
related problems in field delineation with satellite
remote sensing data36. They worked with Aus-
tralia data for the training and inference area.
Their base was on Patch Tomato Attention Vi-
sion Transformer 3D (PTAViT3D). They esti-
mated the segmentation efficiencies and Sentinel-
2 Sentinel-1 fusion 3D dataset was generally the
best in all performances, followed by Sentinel-2
3D. Finally, there was the test set ePaddocks for
the evaluation and the novel approach was suc-
cessful and robust.

Segmentation

Wang and Wang[30] proposed a low computing
power-requiring and low-sample size-sufficient Bi-
lateral Attention Fusion Network(BAFNet) that
segments urban hyperspectral images. The visual
attention network extracts the dependency path
with depthwise convolution (separate channel-by-
channel convolution then stacking on top of each
other), depthwise dilation convolution (dilates the

34A tensor is decomposed into a core tensor and ma-
trices. It can be thought of as follows: a 2D matrix is
decomposed into a specific matrix and unit vectors that in
case they are multiplied by the matrix, they will restore
the original. “Unitness” is on the vectors in this case.

35A non-linear decomposition method, in contrast to lin-
ear ones like singular value decomposition. For further
information[28].

36GitHub repository for their code can be found here.

kernel with inserted holes between them37), and
1x1 convolution (directly taking a single pixel in-
formation). The remote-local path, on the other
hand, has the ability to locally represent the data
and exchange information between them later.
Their datasets were Vaihingen and Potsdam im-
ages. In Vaihingen, BAFNet performed the best
in many metrics and classes except floating-point
operations and tree land cover. In Potsdam, it
was best in all cases except floating-point opera-
tions.

Blushtein-Livnon et al[31] made a cross-check
study on evaluating the accuracies of the segmen-
tation and object detection labeling tasks by the
human annotators and cautioned that they are
simply not 100 % true, and several biases are
present, such as being more prone to false nega-
tives than false positives. Moreover, a low number
of targets in an image makes it more difficult for
annotators to locate/segment/detect the targets.

Broni-Bediako et al.[32] proposed the gener-
alized few-shot semantic segmentation method.
They stressed the importance of also predicting
base classes well from the background while try-
ing to model the novel class, as sometimes learn-
ing a new class better might be detrimental to
the base class prediction accuracies. The paper
is related to a data science challenge and among
the winners, one proposed the SegLand where the
base-class predictors were frozen, and the novel
class ones were orthogonal. There were four other
winners with different approaches and algorithms
which were still competitive or best in one or more
land cover classes both base and novel.

Diaconu et al.[33] reviewed the methods that
can utilize multi-sensor earth observation re-
mote sensing data and deep learning to delin-
eate glaciers and monitor them temporally. They
summarized the studies in the standard glacier-
extent mapping, glacier area change analysis,
rock glacier mapping, and calving-front (ocean
neighboring glaciers) detection. Another com-
prehensive review[34] was on knowledge distilla-
tion, transferring large-complex model knowledge
to computationally-efficient ones on tasks such as
object detection and segmentation.

Ren et al.[35] worked on a tuning method in
multimodal model training. There were two tar-
gets, one was reducing the required time and re-
sources without compromising accuracy, and the
other was higher generalizing power using a lower
amount of data. For this, the input data was
clustered with minibatch kmeans, and the train-
ing data was selected so as to have a general,
not overfitted model at the end. They used the

37Let’s say we have a 4x4 matrix and the kernel is 2x2,
we decide to put one row and column between the kernels.
In the end, we will have 5x5 result
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AID, UCMerged, and LBREN dataset with mul-
tiple baselines, such as, MiniGPTv2, GeoChat,
SkyEyeGPT, and InstructBLIP. In the end, their
model trained on one-third of the data it was ini-
tially trained on only showed a 1% reduction in all
performance metrics, and it was the best among
the models used in this study.

Liu et al.[36] proposed a new segment-
anything model (SAM), pointly-supervised38

SAM which significantly outperformed the
(vanilla) SAM model and several other baselines.
The algorithm has an offline prototype generation
where it encodes the image in a feature map,
generates feature points, and cluster them. Then,
an input image is strongly and weakly augmented
with image encoders, a point prompt is provided
and it is encoded followed by a mask decoder, the
mask is refined and the offline prototype cluster
is matched with the cluster of this SAM with the
self-training step. NWPU VHR-10, HRSID, and
WHU datasets were used in this study. Their
algorithm was mostly the best in all datasets.

Ma et al.[37] stated the need for a realistic
adversarial attack in algorithm development and
presented their cloud adversarial example. Their
cloud mask was related to the Perlin noise, and
they provided clouded image examples.

UAV

Farid et al.[38] proposed the Proximal Policy Op-
timization to train UAVs in a way that prevent
them from colliding with each other, with obsta-
cles, and “discovering” an already covered area.
This is a type of reinforcement learning activity
where unwanted activities outlined in the previ-
ous sentence were penalized. The actor-critic net-
works (meaning the critics to the actors - UAVs
according to their actions) involved long-short
term memory (LSTM) and convolutional neural
network (CNN). This novel approach can be ro-
bust against new, untrained environment-related
challenges, and using LSTM rather than CNN im-
proved its overall performance.

Diao et al.[39] focused on aerial remote sensing
and developed the Frequency-Enhanced Multi-
Head Self-Attention (FE-MSA) algorithm and
an affine transformation-based contrastive learn-
ing in the pre-learning step. The latter aims
to enlarge the distant-small targets in oblique
views to augment its detection frequency, and
the former improves occluded targets’ detection,
among other things. Additionally, the paper in-
troduces the first aerial remote sensing (ARS)-
specific foundational model RingMo-Aerial, and

38Rather than a polygon or shape, a point indicates the
location of a specific object, which is more challenging to
train and work.

ARS-Adapter with improved fine-tuning capabil-
ities. Their proposed algorithm has beaten other
baselines in several different datasets for many
metrics most of the time. The categories in per-
formance comparisons were the pretraining phase,
scene classification, change detection, 3D recon-
struction, semantic segmentation, object detec-
tion, object tracking, ARS-adapter, and abla-
tion experiments. They recommended future re-
search targets for better generalization capability,
computational efficiency, and experiments in real-
world applications.
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Last week in Environmental
Chemistry

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 16 - September 23,
2024. chemRxiv’s Earth, Space, and Environ-
mental chemistry preprints are being surveyed,
and unfortunately, not many preprints are pub-
lished under environmental topics in this field.

Deal et al.[40] reported the detailed reaction
mechanism behind thiosulfate oxidation by ozone
in aerosols. They simulated such conditions with
levitated microdroplets to study pH-dependent
ozone oxidation of sulfate under atmospheric and
other aqueous and wastewater treatment condi-
tions. A quadrupole electrodynamic trap (QET)
trapped and reacted the microdroplets and these
were transferred to an open-port sampling inter-
face mass spectrometry (OPSI-MS). Roughly, the
idea is to take time series measurements of sev-
eral relevant sulfur and oxygen-bearing molecules
with a continuous gas-phase ozone flow, and this
ozone was also analyzed by a UV ozone analyzer.
Kinetiscope commercial software was used to sim-
ulate stochastic kinetics of the reaction and exper-
imental data benchmarked these. While analyz-
ing the droplets, they also considered the neces-
sary corrections on bulk-to-surface transfers. The
air-water interface sulphur species were monitored
via Deep-UV Second Harmonic Generation spec-
troscopy. Their results were consistent with the
literature while identifying sulfate, trithionate,
and tetrathionate as reaction products and sul-
fite as an intermediate. Conversely, they identi-
fied dithionite as a reaction intermediate as well,
and again contrary to the literature, they did not
detect dithionate. In the end, they were able to
propose a reaction mechanism and specific kinet-
ics.

Hariharan and Johnson[41] stated that the
mass of atmospheric particles below 10 nm in di-
ameter in size can be measured via MS techniques
while they remain intact. The curious review not
only provided an in-depth analysis of what has
been done but also pointed out clear future rec-
ommendations for developing this field.
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Last week in Data Science-
Applied Statistics

Author: Yasin Güray Hatipoğlu

The preprints summarized here were pub-
lished between September 16 - September 23,
2024. This is generally from arXiv’s stat.ML (and
correspondingly cs.LG) cross-list. Large-language
model-related, or text-mining and similar studies
are omitted, also several less-application oriented
studies (they, too, are important, but currently
Science Ascend can’t accomodate to review them
within the time constraints.

Data Decomposition

Dharamshi et al.[42] worked on the decomposi-
tion of the data with Gaussian distributed com-
ponents having a priori unknown mean and/or
standard deviation. They consider more than one
realization of a dataset, then also consider a sin-
gle realization, like a single time-series photome-
try of a star, or water temperature change against
time, etc., where in the latter they stated that
separate independent components are not possi-
ble, but dependent components are. Indeed, they
provided a graphical representation of an algo-
rithm, where with a known covariance matrix,
Gaussian data thinning39 is recommended for get-
ting independent folds. After theoretical under-
pinnings, applied examples are being provided40

from a simulation case and University of Califor-
nia Irvine (UCI) encephalography data and re-
ported the added benefit of their approach.

Ameri et al.[43] worked on quantitative ul-
trasound data with Homodyned-K distribution41

model and estimated their parameters Bayesian
Neural Networks. For decomposing the uncer-
tainty, when they first calculate the standard
deviation of multiple model inferences and av-
eraging these over 10 different input datasets,
they pick epistemic (model) uncertainty, while do-
ing this in the opposite order gave the aleatoric
(data/measurement) uncertainty. In the end, the
error in the Bayesian Neural Network estimations
was found mostly from the data uncertainty.

Feofanov et al.[44] utilized principal compo-
nent analysis and neural network-related methods

39As opposed to splitting data into several parts, data
thinning separates value in the data into different columns
where if summed, reach the actual value of that row.

40The relevant GitHub repository is here..
41For ultrasound measurements, this distribution’s

parameters 1)scatterer clustering parameter, and 2)
coherent-to-diffuse scattering ratio are correlated with
physical variables

to overcome the resource-intensive problems aris-
ing from foundation models for time-series anal-
ysis, especially with multi-channel, very high di-
mensional data. Basically, even pre-trained mod-
els are sufficiently resource intensive when re-
quiring to utilize the same high-dimensional data
on runtime. Hence, the authors considered a
dimensional reduction approach to later work
through the data in an efficient and faster (one
order of magnitude similar speed enhancement
with the same resources) way. They tested this
concept with 12 different datasets having more
than 9 channels. They evaluated MOMENT[45]
and ViT. They implemented a PCA-like method
as Patch PCA, where they distribute different
timesteps of different temporal datasets by mul-
tiplying and then patching into different patches,
essentially having two dimensions at the end, one
with the multiplication of dataset number and
patch number, and the other with the multiplica-
tion of number of dimensions and patch window
size.

Time Series

Chen et al[46] combined recurrent neural network
and stochastic interpolants42 to develop a time se-
ries forecasting algorithm without too much com-
putational cost. In this stochastic mapping, ve-
locity and score functions can be modelled with
different functions, such as recurrent neural net-
works, and conditional generation of such esti-
mations are also possible. In only one in four
datasets, their novel algorithm was surpassed by
another one, flow-matching. Furthermore, the de-
noising diffusion probabilistic model, vec-LSTM
and score-based generative model were competed
against the novel algorithm.

Bhattacharya et al.[47] worked on anomaly de-
tections on time series data. Their Balanced Point
Adjustment removes the internal bias of previous
algorithms on true positive measuring rate and
resulting inflated high score. Different than the
point adjustment, their balanced adjustment in-
troduced an island around false positives and ad-
ditional adjusted scores according to them. Then,
they tested the robustness, discrimination power
order, and exclusivity and proved that their algo-
rithm is superior on these. They also tested them
in simulated data and again, their novel approach
was better.

42A dependent coupling between two variables/features
are reflected in the subsequent time steps according to their
probability densities.
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Machine Learning / Deep Learning

Jain et al.[48] reported a generalized training
method SubSelNet. The idea is choosing such a
subset that it will be beneficial for different model
architectures, rather than the status quo where
training - test separation steps are model-specific,
and at the same time, all these should be achieved
without heavy computing power and resources.
Furthermore, SubSelNet is not only able to adapt
itself for its trained model architectures and de-
velop a subset appropriate for all, but also it can
do this for unseen architectures, hence the gen-
eralized adjective. In three steps, it encodes the
architecture in a way that can be done for other
architectures as well, into a vector space. Then,
the second step makes an approximate prediction
of this trained model. Finally, the subset selection
is according to the predictions from the previous
step. This last part has transductive and induc-
tive part, in which the former takes the predicted
training step and optimizes according to the can-
didate subset of that model, in contrast, in the
latter no optimization takes place in much faster
way. They applied these and available pruning,
selection-via-proxy, facility location, grad-match,
EL2N, and GraNd with the following datasets:
FMNIST, CIFAR10, CIFAR100, Tiny-Imagenet-
200, Caltech-256. In the end, they report a best-
case scenario of efficiency with this approach as
a matter of trade-off between runtime, accuracy,
and memory usage.

Chatterjee and Sudijono[49] explored the the-
oretical background of how neural networks (also
deep neural networks) can be so complex and
learn well and at the same time generalize on test
sets. They attributed this to the fact that usually
studied images and similar datasets have them-
selves quite a complex structure so that they can
be learnt with complex architectures while having
not so much noise so that they are general still.
They studied this with if- and for-loop containing
simple neural programs on prime number estima-
tion in a given range.

Karumuri et al.[50] worked on efficient neural
operators and randomized sampling. They stated
that the superior performance of DeepONet, a
deep neural operator approach, over resource and
time-intensive finite element method-like numer-
ical solvers, or physics-informed neural network
(PINN) where they are mostly reliable over their
set boundaries. DeepONet has two sub-networks,
branch and trunk taking different kinds of inputs
(branch learns the parameters affecting the value
at that specific location/time, and trunk takes the
spatial and temporal information separately and
directly. The authors in this paper reported a new
randomized sampling method that reduces gener-
alization error. They found the approach better

and efficient and pointed the requirement of fu-
ture research on finding the optimal number of
evaluation points for better performance in terms
of generalization.

Optimization

Biswas et al.[51] implemented a novel way to re-
solve the Bayesian Optimization issue of being
stuck at a local optimum by creating a human-
intervened way to generally estimate more than
one optima and have a better understanding
of the interactions among the parameter space.
They applied the method to Piezoresponse spec-
troscopy data with noise and piezoresponse force
microscopy43 hyperspectral data. They reported
that this method has a higher-value scientific out-
put than the normal Bayesian Optimization ap-
proach.

Hong and Kratsios[52] worked on a multilayer
perceptron (MLP) approach using ReLU (recti-
fied linear unit) that can universally learn the
data with large complexity without being too
specific, in other words, that can still general-
ize well. Their report scrutinized the theoretical
background of being both accurate and general
using the template of the ReLU activated MLP.

43An atomic force microscopy variation (which applies
force to a surface or chemicals with several different ways
and graph its topography) utilizing piezoelectric properties
of the substrate material under the investigation.
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